A l'Eduard, tan bon matemàtic com bon jugador de futbol, que desitja un final feliç per a la història d'Artal i Arsenda.
Gauss és conegut com a "príncep dels matemàtics".
Alguns el consideren el més gran matemàtic des de l'antiguitat.
Coneixes algun matemàtic de l'antiguitat?
Per què s'accentuen els mots: príncep i matemàtics?
SUMA DE NOMBRES PARELLS CONSECUTIUS
2 + 4 + 6 + 8 + ... + 94 + 96 + 98 + 100 =
Solució:
1r. Hem de saber el nombre de sumands que hi ha.100 : 2 = 50 sumands hi ha en total.
2n. Calculem els parells de sumands que podem formar.
50 : 2 = 25 parells de sumands podem formar.
3r. Esbrinem la suma de cada parell de sumands.
100 + 2 = 102 és la suma de cada parell de sumands.
4t. Calculem la suma total.
25 x 102 = 2550 és la suma total.
ARTAL I ARSENDA
El príncep Artal galopava a cavall d'aquest brau corser:
(Troba el resultat de la suma.)
(Troba el resultat de la suma.)
3 + 6 + 9 + 12 + ... + 90 + 93 + 96 + 99 =
Què significa "brau corser"?
La bruixa Gripassa, més dolenta que la pesta, empaitava Artal sobre aquesta escombra:
1 + 5 + 9 + 13 + ... + 89 + 93 + 97 + 101 =
-Mai, ningú no aconseguirrrà saberrr els sumads que té la meva escombrrra -cridava la lletjota Gripassa.
-Mai, mai, mai, mai! -repetia un mussol-, perquè... ¿qui pot descobrir que el nombre de sumands d'aquesta escombra és el quocient de 101 entre 4 més les escombraries del residu?
Tancada a la masmorra poligonal del castell plorava la bonica Arsenda.
Construeix un octàgon regular inscrit en una circumferència de diàmetre 11 cm. Traça-hi totes les seves diagonals.
Artal, ràpid com el vent, travessà un bosc de nombres decimals.
0,1 + 0,2 + 0,3 + 0,4 + ... + 2, 7 + 2,8 + 2,9 + 3 =
En una cabana del bosc el mag Merlí guardava un quadrat màgic.
Soluciona aquest quadrat màgic:
Emplena el requadre fent que cada fila, columna i diagonal sumi 15.
Hi has de col·locar els nombres 1, 2, 3, 4, 5, 6, 7, 8 i 9.
Hi has de col·locar els nombres 1, 2, 3, 4, 5, 6, 7, 8 i 9.
Inventa't un conte on surtin aquests personatges: Artal, Arsenda, Gripassa i Merlí.
(Si vols, pots seguir la història.)
UN ALTRE QUIN ROLLO
ResponEliminaEl príncep Pol també ha estat empresonat per la bruixa GRIPASSA com la bella ARSENDA. Qui el podrà salvar?
EliminaToni!!!
ResponEliminaNo entenc lo de la bruixa Grapissa o algó aixi , m'ho podries esplicar?
Llegeix a poc a poc i ho entendràs. Com pot ser que escriguis el nom de la bruixa malament si el tens davant dels nassos? Això només té una explicació: el valent i noble cavaller Gerard ha estat embruixat amb els poders malèfics de la bruixota Gripassa.
EliminaToni!!!!!Alerta!!!!He posat una cosa a google i m'ha surtit la resposta del quadrat màgic!!!!No ho cambis per què ja ho he fet.
ResponEliminaPD:No cambis ni una coma.No diré el que he posat només us diré és màgic...
he aixo es trampa laia
EliminaMoltes gracies Laia, ja he trobat la solucio.
EliminaAdeu
No es trampa.Es que vaig buscar-ho ,per veure si explicava, si hi havia una norma ,o algú més, i em va sortir em vaig quedar amb la boca oberta(:O).
EliminaJob aixo que ha fet la Laia no es trampa si no que ho ha buscat hi li ha sortit tu tabe ho pots fer si bols.
ResponEliminaQuantes faltes,em desmaio!!!!
EliminaNo,el que busca les respostes per internet no és trampa ,pero no apren a fer coses per ell/a mateix.
ResponEliminaMolt ben dit, Aleix.
EliminaA la prova en sortirà un, i els alumnes no podran consultar el salvavides d'internet. Naufragi, segur.
Quina prova?
EliminaPD:Toni no m'espantis
Algunes respostes
ResponEliminaLaia ja m'astas dient el que as ficat al gogle
ResponEliminaJajajajaja.Ja m'imagino que ho voldràs saber però no ho diré a ningú.
EliminaPD:Si ets intel·ligent serà ben evident.(Quin bonic rodolí).
Com que no vull fer trampes,no ho faré servir d'acord, ara que ningú em digui tramposa(eh!Job).
ResponEliminaJa ho he acabat.
ResponEliminame fet un far de escriure la histori uf pero fa molt que hu e acabat
ResponElimina